Brain Transplants for Toys
I have a bunch of old toy skeletons sitting around. They are not toy versions of the bones of animals, but the frameworks and some of the motors from things like a toy tracked robot, an RC truck, a few toy robot insects, some tiny RC cars, a robot base with continuous-rotation servos, and so forth. All of these things have motors or servos in them. All of them need some form of controller to make them into autonomous robots to do my bidding (or wander around banging into things).
To that end, I’ve developed a little embeddable controller around the ATMega8, ATMega48/88/168, and other pin-compatible microcontrollers. That is the same chip used in the Arduino, so my board will be software-compatible with the Arduino as well.
My controller, which I’m calling ToyBrain, has a pair of 1A (stackable for more current) H-Bridge motor drivers, so it can control up to four motors in one direction, two motors bidirectionally, or one stepper motor. It also provides two headers for servo motors. For inputs, it has four analog or digital inputs and two digital inputs that are connected to interrupt lines, so it can do things like handle bumper switches in an interrupt service routine.
I’ve ordered 10 boards. When they arrive, I’m going to populate them with whatever chips I have around and try to get a few of my old toys running. Assuming everything goes well and I get a polished device together over the winter, this may end up being something I sell at the MIT flea regularly. I’ll hook up a bunch of toys with the same controller, to show off its versatility, and offer the controller as a kit people can buy.
Recent Comments